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Relationships between faults, extension fractures and veins, and stress
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Abstract
Faults are commonly related to extension fractures, defined here as including extension veins. Extension fracturing is integral to fault initi-
ation and propagation, and extension fractures also form after fault slip. In these situations, fault planes contain the intermediate principal stress
s2, and slip is perpendicular to the line of intersection between the fault and the extension fractures. However, for reactivated faults, multiple
fault sets, and faults formed according to the Healy theory, s2 is not necessarily within the fault plane. A theoretical analysis shows that the trace
of an extension fracture on a fault can make angles from 0� to 90� with the maximum resolved shear stress. The angle depends on the fault
orientation relative to the principal stresses, and the ratio between the stresses. Extension fractures only intersect faults perpendicular to the
maximum resolved shear stress on faults containing the maximum or intermediate principal stresses, or when their magnitudes are equal
(s1 ¼ s2). Field observations show that extension fractures can intersect faults along lines at oblique angles to slip directions, as predicted
by the theory. Such angles may be indicators of fault reactivation, multiple sets of faults, or Healy theory faulting.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Extension factures and veins are commonly found adjacent
to faults (e.g. Fig. 1) and within fault zones at a range of scales.
‘‘Extension fractures’’ will be used subsequently to refer to
fractures and veins with a dominantly extensional (mode I)
displacement. In many cases of extension fractures observed
around faults in the field, compelling arguments show that ex-
tension fractures formed synchronously with slip on associated
faults. Experiments demonstrate that extension fracturing is in-
tegral to fault initiation and propagation (e.g. Paterson, 1978).

Several models have been proposed to account for geomet-
rical and temporal relations between faults, coeval extension
fractures, and principal stresses (e.g. Wilson et al., 2003;
Crider and Peacock, 2004). In most models, the fault plane
is considered to contain the intermediate principal stress
axis, and extension fractures intersect the fault along lines
perpendicular to the slip vector of the fault, which is consistent
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with the intermediate stress having no influence on the fault
slip direction.

However, other possibilities exist for the geometric rela-
tionships between extension fractures and faults because of
fault reactivation, multiple fault sets, and faults formed by
the Healy theory (Healy et al., 2006). The aim of this paper
is to develop a general theoretical basis that encompasses all
of these possibilities, and can be supported by field examples.

2. A review of models for relationships between
faults and extension fractures
2.1. Introduction
Five different approaches to understanding relationships be-
tween faults and extension fractures can be identified (Table 1,
Fig. 2). These approaches deal with extension fractures that
formed before, during or after fault propagation within the
same deformation event. The concepts of pre-existing and
precursory structures (Crider and Peacock, 2004) are most use-
ful in this context: a pre-existing structure is one formed in an
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Fig. 1. Extension veins associated with reverse faults. Scapolite veins in an

amphibolite in the Eastern Fold belt of the Mount Isa Inlier (UTM Zone

54K, 0416079 7703159). Note reverse separation of veins in both photographs.

Slight curvature of veins is interpreted as drag in (a). Photographs look due

south and show east over west reverse movement, likely to have occurred

during D2 of the Isan Orogeny at w1600e1580 Ma. Hammerhead for scale

approximately 10 cm long.
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earlier stress field, unrelated to faulting, and a precursor struc-
ture is one that forms during the early stage of faulting in the
same stress field. The principal stress vectors are s1, s2, s3,
with magnitudes s1 � s2 � s3, taking compression positive.
2.2. Extension fractures as pervasive precursors to faults
Extension fractures are perhaps most commonly understood
to have formed pervasively in a rock as precursors to faulting
(Fig. 2a). This evolution is strongly supported by experiments
(e.g. Brace et al., 1966; Brace and Martin, 1968; Scholz, 1968;
Paterson, 1978; Peng and Johnson, 1972; Rutter and
Hadizadeh, 1991) and microstructural observations from natu-
ral faults (e.g. Engelder, 1974; Blenkinsop and Rutter, 1986).
Fractures link and coalesce to form a fault zone, which they
intersect along a line perpendicular to the slip direction. The
extension fractures considered in most of these studies are mi-
croscopic, but on a larger scale, joints and veins have been
identified as precursors to faulting (e.g. Martel et al., 1988;
Peacock and Sanderson, 1992, 1995a,b; Willemse et al.,
1997; Mollema and Antonellini, 1999; Acocella et al.,
2003). Faulting may also evolve by localisation of joints or
veins into en echelon arrays (Olson and Pollard, 1991; Smith,
1996; Teixell et al., 2000).
2.3. Extension fractures that propagate from the
tips of fractures loaded in shear
Experiments show that extension fractures form at the tips
of isolated fractures or flaws that have been loaded in shear
(e.g. Brace and Bombolakis, 1963; Tapponier and Brace,
1976). The formation of such ‘‘wing cracks’’ (Fig. 2b) is
well understood from a theoretical point of view (e.g. Horii
and Nemat-Nasser, 1985; Pollard and Segall, 1987; Cooke,
1997; Willemse and Pollard, 1998), and natural examples of
wing cracks (and similar features such as tail cracks, pinnate
and feather fractures) have been described (e.g. Rispoli,
1981; Engelder, 1989; Kattenhorn and Marshall, 2006). Fault-
ing may occur by the linkage of wing cracks, that are them-
selves formed by slip on pre-existing fractures or flaws (e.g.
Segall and Pollard, 1983; Horii and Nemat-Nasser, 1985;
Granier, 1985; Kemeny and Cook, 1987; Martel, 1990). Link-
ing of fractures loaded in shear by wing cracks is one way to
explain the apparent paradox that isolated shear fractures
cannot grow by in plane propagation (e.g. Lawn and Wilshaw,
1975; Cox and Scholz, 1988; Petit and Barquins, 1988).

The concept that extension fractures propagate from the
tips of fractures loaded in shear is in a sense the opposite of
the first model, which posits that pervasive extension fractur-
ing precedes fault localisation. In contrast, extension fractures
in this case form after shear loading of fractures, and faults
evolve by linkage of extension fractures, which propagate in
the stress fields of overlapping fracture tips. Wing cracks are
generally understood to intersect their parent fracture perpen-
dicular to the slip direction, and the same relationship holds
between wing cracks and faults.
2.4. Extension fractures localised in a fault process zone
In this view, fault propagation is preceded by or synchronous
with localised extension fracturing in the process zone around
the crack tip (Fig. 2c, e.g. Rudnicki, 1980; Reches and Lockner,
1994; Vermilye and Scholz, 1998). The process zone is the rock
volume containing features that results from fault-tip propaga-
tion, as distinct from the damage zone that describes the body of
rock containing all structures related to fault deformation



Table 1

Common relationships between extension fractures and faults

Relationship Timing Association q Scale References

Extension fractures as

pervasive precursors to

faults which form in a

zone of linked fractures

1. Extension

fractures

2. Faults

Faults link zone of

extension fractures;

also extension

fractures elsewhere

90�, although many

studies in 2D, and

experiments are

biaxial

Commonly observed

microscopic-ally;

also field studies

on m scale

Brace et al., 1966; Brace and Martin,

1968; Engelder, 1974; Paterson, 1978;

Peng and Johnson, 1972; Blenkinsop

and Rutter, 1986; Martel et al., 1988;

Olson and Pollard, 1991; Peacock and

Sanderson, 1992, 1995a,b; Rutter and

Hadizadeh, 1991; Scholz, 1968; Smith,

1996; Willemse et al., 1997; Mollema

and Antonellini, 1999; Acocella et al.,

2003; Teixell et al., 2000.

Extension fractures that

propagate from the tips

of fractures loaded

in shear; wing cracks

connect to form faults

1. Fractures

2. Extension

fractures

(wing cracks)/

flaws

3. Faults

Extension fractures at

crack tips; faults link

zone of cracks and

extension fractures

90�, although many

studies in 2D, and

experiments

are biaxial

Microscopic and

mesoscopic

Brace and Bombolakis, 1963; Lawn and

Wilshaw, 1975; Tapponier and Brace,

1976; Rispoli, 1981; Segall and Pollard,

1983; Granier, 1985; Horii and Nemat-

Nasser, 1985; Kemeny and Cook, 1987;

Pollard and Segall, 1987; Petit and

Barquins, 1988; Cox and Scholz, 1988;

Engelder, 1989; Martel, 1990; Cooke,

1997; Willemse and Pollard, 1998;

Kattenhorn and Marshall, 2006

Extension fractures

localised in a fault

process zone

Extension

fractures

simultaneous

with propagation

Extension fractures

are localised around

fault tip; may be left

in a damage zone

90� assumed but

oblique angles

measured

Microscopic Rudnicki, 1980; Blenkinsop and Drury,

1988; Scholz et al., 1993; Reches and

Lockner, 1994; Anders and Wiltschko,

1994; Reches and Lockner, 1994; Cowie

and Scholz, 1998; Vermilye and Scholz,

1998; Shipton and Cowie, 2001; Martel

and Langley, 2006

Extension fractures

formed after slip

on irregular fault

surfaces

1. Faults

2. Extension

fractures

Extension

fractures adjacent

to faults

90� Microscopic-

mesoscopic

Friedman and Logan, 1970; Conrad and

Friedman, 1976; McEwen, 1981; Teufel,

1981; Hancock and Barka, 1987; Chester

and Fletcher, 1997; Chester and Chester,

2000; Wilson et al., 2003

Faultefracture mesh Cyclic failure

modes

Pervasive network 90� Microscopice

Mesoscopic

Hill, 1977; Sibson, 1996, 2004; Eichhubl

and Boles, 2000; de Ronde et al., 2001;

Tunks et al., 2004; Lafrance, 2004

The angle q is the angle between the intersection of the extension fracture and the fault and the slip direction, Illustrated in Fig. 4b. See text for references.
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(Vermilye and Scholz, 1998). In the process zone model, exten-
sion fracturing is not pervasive throughout the rock volume and
the development of extension fractures interacts with fault
propagation. This model is supported by experimental observa-
tions (Reches and Lockner, 1994), by field examples (Blenkin-
sop and Drury, 1988; Anders and Wiltschko, 1994; Vermilye
and Scholz, 1998; Martel and Langley, 2006), and by theory
(Cowie and Scholz, 1998; Shipton and Cowie, 2001). The
process zone model combines elements of both the preceding
models: fault propagation occurs by extension fracture linkage,
but the extension fractures are localised by the propagating
fault. Models for fracture orientations in the process zone
suggest that extension fractures should intersect the fault plane
perpendicular to the fault slip vector (e.g. Scholz et al., 1993).
2.5. Extension fractures formed after slip
on irregular fault surfaces
Extension fractures that formed after a slip event on a fault
have been observed in experiments on a microscopic scale
(‘‘microscopic feather fractures’’; Friedman and Logan, 1970;
Conrad and Friedman, 1976; Teufel, 1981). These microfrac-
tures occur only within grains adjacent to the fault, where
they are commonly wedge-shaped towards the fault plane
(Fig. 2d), and they are close or parallel to the direction of ap-
plied maximum principal stress. Extension fractures associated
with slickensided surfaces between pebbles in a conglomerate
(McEwen, 1981), and comb fractures (Hancock and Barka,
1987), may fall into this category. All these extension fractures
are distinct from the three previous cases because they form
after a finite slip, rather than during propagation. They can be
explained and modelled as the effect of stress concentrations
due to movement around fault bends or asperities (Fig. 2e)
(Chester and Fletcher, 1997; Chester and Chester, 2000; Wilson
et al., 2003). These extension fractures intersect the fault
surface perpendicular to the slip direction.
2.6. Extension fractures and faults form a mesh
Faults and extension fractures may grow together and link
to form a faultefracture mesh (Fig. 2e; Hill, 1977; Sibson,
1996, 2004). In models and field examples of meshes, the
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extension-fracture-fault intersection is assumed or interpreted
to be parallel to s2 and perpendicular to the fault slip direction
(e.g. Eichhubl and Boles, 2000; de Ronde et al., 2001;
Lafrance, 2004; Tunks et al., 2004).
2.7. Faults that do not contain s2
The above models consider that extension fracturing and
fault propagation occur in a single related deformation
event. They assume or imply that faults contain s2, and
that the intersection between extension fractures and the
fault will be perpendicular to the slip direction. However,
at least three circumstances exist where these conditions
may not apply. Firstly, during fault reactivation, which is
commonly linked to extension fracturing, s2 may not lie
within the fault plane (Fig. 3a). This situation may apply
to faults formed on pre-existing structures, which by defini-
tion formed in a different stress field from that of the fault
(e.g. Cruikshank et al., 1991; Wilkins et al., 2001; Crider
and Peacock, 2004).

An increasing number of studies recognise that multiple
sets of faults can be formed in single deformation events in
nature (e.g. Aydin and Reches, 1982; Oesterlen and
Blenkinsop, 1995; Beacom et al., 1999; Crider, 2001; De
Paola et al., 2005; Imber et al., 2005; Jones et al., 2005; Miller
et al., 2007) and experiments (e.g. Oertel, 1965; Reches and
Dietrich, 1983). Theoretical accounts for such geometries
have been given by Reches (1978, 1983), Krantz (1988), and
Johnson (1995). In these polymodal fault patterns that form
in a single stress field, at least some faults cannot contain
s2. No fault contains s2 if the fault patterns are additionally
orthorhombic and symmetric about the principal stress axes
(Fig. 3b).

The theory of faulting by microcrack linkage along most
favourable planes of interaction between mode I cracks (Healy
et al. (2006) is a third case in which faults may not contain s2.
The theory suggests that poles to faults should be distributed
Fig. 2. Models for the relationships between extension fractures, faults and

principal stresses. Extension fractures are black lines (red in the coloured

figures), faults or incipient faults are black lines with half arrows, fractures

loaded under shear in (b) are grey lines. Left and right columns are early

and late stages in fault/fracture evolution respectively. The principal stress vec-

tors are s1, s2, s3, with magnitudes s 1� s2 � s3, taking compression posi-

tive. (a) Extension fractures are widespread precursors to faults. The

evolution of a fault from an array of extension fractures, as in the Peng and

Johnson (1972) beam buckling model, is shown. (b) Extension fractures prop-

agate from flaws loaded in shear to form wing cracks. Incipient linkage of

wing cracks in an array is shown to the right (cf. Horii and Nemat-Nasser,

1985). (c) Extension fractures are localised in a fault process zone on a prop-

agating fault. The orientation of extension fractures in the process zone around

the fault tips is shown after Vermilye and Scholz (1998). Only the extension

fractures in the active process zone are shown in each view. (d) Extension frac-

tures form after slip on faults. ‘‘Microscopic feather fractures’’ are fractures

with a characteristic tapered shape, confined to zone adjacent to fault, as

shown in black (e.g. Friedman and Logan, 1970). (e) Extension fractures

form after slip on faults due to ‘‘wavy’’ fault surface (Chester and Chester,

2000). (f) Extension fractures link with faults to form a fault facture mesh

(e.g. Sibson, 1996).



σ2

σ1σ3

σ2

σ1

σ3

σ3

a

b

c

Fig. 3. Faults that do not contain the intermediate principal stress axis. All

diagrams are lower hemisphere, equal area stereoplots. (a) Fault plane in an

arbitrary orientation with respect to principal stresses due to reactivation. (b)

Orthorhombic faults that are symmetrical about the principal stresses. (c)

The Healy theory (Healy et al., 2006) for faulting by extension fracture inter-

action. Poles to fault are distributed on a cone around the local minimum

principal stress with an apical angle of 26�. The other principal stresses

have no specified orientation with respect to the faults.

θ
α σ2

σ1

σ3

i

τ

Fault

b

Max shear

stress

Fault-fracture intersection

Extension fracture

α β
γ

σ1

σ2

σ3

f

Fault

a

Fault
normal

Fig. 4. (a) Coordinate framework for analysis of faults and extension fractures.

Principal stresses s1, s2, s3, fault plane normal f, specified by angles a, b and

g giving direction cosines l, m, n. (b) An extension fracture with normal in the

s3 direction intersects the fault along i. The direction of maximum resolved

shear stress is t. The angle between i and t is q.

626 T.G. Blenkinsop / Journal of Structural Geology 30 (2008) 622e632
on cones with an apical angle of 26� about the local minimum
principal stress (Fig. 3c). Fault reactivation, multiple fault sets,
and the Healy theory require a more general consideration of
the relationship between extension fractures and faults than
situations in which faults contain s2.
3. The general relationship between faults,
extension fractures, and stresses

The following analysis uses a coordinate framework of
principal stress axes s1, s2, s3 in the x, y, and z directions
(cf. Jaeger and Cook, 1979; Fig. 4a). The orientation of
a fault-plane normal (f) is specified by its direction cosines
l, m, and n. The direction ratios of maximum resolved shear
stress on the fault plane, t, are given by expression 38 of
Jaeger and Cook (1979, p. 22):

l
�

m2ðs2�s1Þ�n2ðs1�s3Þ
�
;m
�

n2ðs3�s2Þ�l2ðs2�s1Þ
�
;

n
�

l2ðs1�s3Þ�m2ðs3�s2Þ
�

ð1Þ

Following a similar approach to Lisle (2000), and using the
stress ratio f ¼ (s2 � s3)/(s1 � s3), Eq. (1) can be simplified
by dividing by �(s1 � s3) to:

l
�

m2ð1�fÞ þ n2
�
;m
�

n2fþ l2ðf� 1Þ
�
;n
�

m2f� l2
�

ð2Þ

The line of intersection i between the extension fracture (a
plane normal to s3) and the fault plane is called ‘‘the faulte
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fracture intersection line’’ (Fig. 4b), and is given by the vector
or cross product of the fault plane normal f, and the normal to
the extension fracture, which is the s3 direction with direction
ratios (0, 0, 1):

i¼ f �s3

giving direction ratios (�m, l, 0). The condition for perpendic-
ularity between this line and the direction of maximum
resolved shear stress, t, is:

ti¼ 0 ð3Þ

which gives:

�lm3ð1�fÞ� lmn2þ lmn2f� l3mð1�fÞ¼ml
�
f�1

�
¼0 ð4Þ

Eq. (4) is solved when m or l are 0, and when f ¼ 1. This
important result demonstrates that the faultefracture intersec-
tion line will be perpendicular to the direction of maximum
resolved shear stress on the fault plane for any fault containing
s1 or s2, and for any fault when f is 1, implying that s1 ¼ s2.
For any other fault, i.e. when the fault plane does not contain
s1 or s2, and f s 1, extension fractures will not intersect the
fault plane perpendicular to the direction of maximum
resolved shear stress.

In this more general situation, an angle q exists between the
faultefracture intersection line i, and the direction of maxi-
mum resolved shear stress t. Then Eq. (3) becomes:

ti¼ cosq ð5Þ

The solution to this equation is more complex because the left
hand side must be normalised by the determinant, Ok, of the
direction ratios in Eq. (3):

k ¼
�
lfm2ð1�fÞ þ n2g

�2þ
�
mfn2fþ l2ðf� 1Þg

�2

þ
�
nfm2f� l2g

�2

Using Eq. (5) and n ¼ 1 � l2 � m2 leads to:

cosq¼�mlfm2ð1�fÞ þ n2g
ffiffiffi
k
p þ

lm
�

n2fþ l2ðf� 1Þ
�

ffiffiffi
k
p

¼ mlðf� 1Þ
ffiffiffi
k
p ð6Þ

This equation shows that the angle q between t and i depends
on the stress ratio (f) and the orientation of the fault plane
with respect to the principal stresses (given by l, m).

Eq. (6) indicates that i can make variable angles q with t

(Fig. 5a), within a range taken from 0� to 90�. Extension
fractures intersect the fault plane parallel to t (i.e. q ¼ 0�)
Fig. 5. Results from the general relationship between faults, extension frac-

tures, and principal stresses. i and t are as described in Fig. 4. (a) General sit-

uation. (b) When the fault plane contains s3, q is 0� for any value of f. (c) q is

90� when the fault contains s2. (or s1, not shown) for any value of f. (d)

When f ¼ 1, q is 90� for any fault orientation.
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when the fault plane has any orientation that contains s3

(Fig. 5b), and perpendicular to t (q ¼ 90�) when the fault
plane contains s1 or s2 (Fig. 5c). When f ¼ 1, q is 90� for
all fault orientations (Fig. 5d).

For other values of f and fault orientations, q is distributed
in the range 0� to 90�, becoming progressively more evenly
distributed through the range as f tends to 0. A histogram
of q values is shown in Fig. 6a from the solution to Eq. (6)
Fig. 6. (a) Histogram of q for 2000 random fault orientations and f values

(0 � f � 1), calculated from Eq. (6). (b) Histogram of q for f ¼ 0.3, the av-

erage crustal value, and 2000 random fault orientations. (c) Histogram of q for

f ¼ 0, and 2000 random fault orientations.
for 2000 random values of f and fault plane orientations.
The histogram excludes the principal planes of stress in which
no slip can occur because they lack shear stress. The histogram
shows that 55% of q values will be 80� or less, indicating that
on average an extension fracture will intersect a fault plane at
less than 80� to t in a random population. The dependence of
q on f is explored further in Figs. 6b and 6c, which show q

values calculated in a similar fashion for f ¼ 0.3 (approxi-
mately the average crustal value: Lisle et al., 2006) and
f ¼ 0. As f decreases, q values become progressively smaller.
For f ¼ 0.3, 74% of q values are less than 80�, rising to 86%
for f ¼ 0. These histograms illustrate solutions to Eq. (6), and
may differ from the distribution of q in nature because faults
may not be orientated randomly.

4. Field examples of oblique relationships between
faultefracture intersection lines and related
fault slip vectors

Many field examples show extension fractures intersecting
faults perpendicular to the slip direction (e.g. Sibson et al.,
1988; de Ronde et al., 2001; Wilkins et al., 2001; Miller and
Wilson, 2004). However, other studies show different relation-
ships. The following examples are selected according to the
criteria that (1) extension fractures and faults are spatially as-
sociated, (2) they are reasonably inferred to belong to the same
deformation event, and (3) orientations of planar and linear
features that can be estimated to an accuracy of 2� or better.

The Larra thrust is a bedding-parallel thrust in the southern
Pyrenees, described by Teixell et al. (2000). The thrust formed
in the middle Eocene at 6e7 km depth in anchizonal-
lowermost greenschist facies conditions, and has a displace-
ment of 5 km. Within the study area, the thrust is developed
along the contact of two limestones, with generally south to
southwest transport directions. At the Pierre-Saint-Martin
locality, a detailed section of the decollement contains intense
bedding parallel veining and oblique extension veins. Table 2
shows that the vector mean of q measurements for six of these
veins (relative to the southwest trending thrust lineation) is
66 � 17� (95% confidence intervals are quoted).

A second example of veins related to a thrust is described in
the northern Appalachians in Maine near Allagash (Bradley
and Bradley, 1994), where the Walker Brook duplex formed
during Acadian deformation under lower greenschist facies.
The duplex is developed in a single turbidite bed 1 m thick
of very fine sandstone to mudstone, and has a displacement
of 185 m. The original transport direction was to the west in
sinistral-reverse movement. Quartz extension veins formed
during thrusting. A mean vein orientation from approximately
50 vein measurements gives a q value of 62� (Table 2; no
confidence interval because measurements were grouped).

The Bayas fault in the Cantabrian Zone of the Ibero-
Armorican arc in North Spain provides a strikeeslip example
(Blenkinsop and Drury, 1988). The strikeeslip deformation
occurred in the Westphalian under a maximum stratigraphic
depth of burial of 4 km, at temperatures of 148e248 �C. Veins
of quartz, barite and iron oxides occur adjacent to the fault



Table 2

q values (vector means) from three field examples where q is less than 90�

Location Rock types Fault q k 95% CI N Reference

Pyrenees Limestone Larra Thrust Fault 66 7.5 17 6 Teixell et al. (2000)

0�460 E

42�580 N

Appalachians Sandstoneemudstone Walker Brook Thrust Duplex 62 w50 Bradley and Bradley (1994)

69�080 W

47�070 N

Ibero-Armorican Arc Quartzite Bayas Strike Slip Fault 52 13.4 9 11 Blenkinsop and Drury (1988)

6�20 W

43�400 N

k, concentration parameter of the Von Mises distribution (calculated after Piazolo and Passchier, 2002); CI, confidence interval (�); N, number of extension

fractures.
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within the Barrios Formation, a fine-medium grained quartzite.
Dextral oblique displacement on the Bayas fault was accom-
panied by opening of the veins since they are partly filled
with cataclasite from the fault plane. The vector mean of 11
vein measurements gives a q value of 52 � 11�, measured
relative to the lineations and corrugations of the fault surface
that plunge 28� NE (Table 2).
5. Discussion

A number of careful field observations demonstrate that q

values can differ from 90� by amounts that are well outside
observational error and the confidence intervals on the data.
These observations are consistent with the theoretical analysis
above. The analysis is given in the context of the direction of
maximum resolved shear stress on a fault. The applicability
of the analysis therefore depends on the extent to which faults
obey the WallaceeBott criterion that slip on faults occurs in
the direction of maximum resolved shear stress (Wallace,
1951; Bott, 1959). The few attempts that have been made to ver-
ify the WallaceeBott hypothesis against independent criterion
either directly (Lisle and Srivastava, 2004) or indirectly by
demonstrating the validity of dynamic analysis (e.g. Blenkin-
sop, 2006), suggest that the hypothesis is generally correct.

Fault slip or fault interaction may perturb stress around
faults. Several field and modelling studies have investigated
these effects (e.g. Sassi and Faure, 1997; Kattenhorn et al.,
2000; Bourne and Willemse, 2001; Maerten et al., 2002;
Roberts, 2007). The perturbing effects of slip can be identified
because they are intensified at fault tips (e.g. Kattenhorn et al.,
2000; Roberts, 2007), and effects due to fault interaction
should be recognisable from the relation between secondary
structures and fault distribution (e.g. Maerten et al., 2002).
The relationship between stress, fault and fracture orientations
derived above will still be valid for the perturbed stress state if
slip occurs according to the WallaceeBott criterion.

A comprehensive study to further test the applicability of
the theory should be a goal for future research. Such a study
would require orientations and relative values of principal
stresses to be obtained independently from the orientations
of the extension fractures, as well as demonstrating that
extension fractures can be clearly linked to faulting. Dynamic
analysis by the inversion of fault slip data (e.g. Angelier, 1984;
Lisle, 1988; Ramsay and Lisle, 2000; Lisle et al., 2006) would
be one way to obtain the stresses. Alternatively borehole data
in an area of active faulting might be used (e.g. Chester et al.,
2007; Hickman et al., 2007; Zoback et al., 2007). In both
cases, the possibility of stress perturbation may place limits
on the scale of the analysis.

The theory and field data have some significant implica-
tions for the use of extension fractures in kinematic and
dynamic analysis. The most simple consequence of the field
examples is that q should not be assumed to be 90�. However,
this value is likely if the fault plane can be demonstrated to
contain s2 (for example, by conjugate faults, e.g. de Ronde
et al., 2001), or if the value of f is 1. Extension fractures
can also be used in dynamic analysis through Eq. (6), which
allows the value of f to be calculated given known orienta-
tions of principal stresses relative to the fault planes, and the
orientation of fault- fracture intersection line.
6. Conclusions

Most models that account for the common association
between extension fractures and faults deal with extension frac-
tures that form prior to, during or after fault propagation in the
same deformation event, and assume that faults contain the in-
termediate principal stress axis. Extension fractures intersect
faults along lines perpendicular to the slip direction in these
models. However, at least three types of faults may not contain
the intermediate principal stress: reactivated faults, faults in
multiple sets, and Healy theory faults (Healy et al., 2006). These
circumstances require consideration of a more general relation-
ship between faults, extension veins/fractures and stresses.

Theoretical analysis shows that the angle q between the
faultefracture intersection line and the direction of maximum
resolved shear stress on a fault plane can range from 0� to 90�.
This angle depends on the orientation of the fault plane with
respect to the principal stresses, as well as the ratios between
the principal stresses. Extension fractures will only intersect
the fault plane perpendicular to the direction of maximum
resolved shear stress when the fault plane contains s1 or s2

(the latter is the case for most fault propagation models), or
when the value of f ¼ (s2 � s3)/(s1 � s3) ¼ 1, indicating
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that s1 ¼ s2. In cases where the fault plane contains s3, exten-
sion fractures can intersect the fault plane parallel to the
direction of maximum resolved shear stress.

Field examples support the contention of the analysis that
values of q may differ significantly from 90�. Such oblique
values of q may be indicators of fault reactivation, multiple
sets of faults, or Healy theory faults. Fault slip vectors and in-
tersections with extension fractures should be measured sepa-
rately in the field, and should not be assumed as perpendicular.
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